Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.954
1.
Exp Dermatol ; 33(5): e15077, 2024 May.
Article En | MEDLINE | ID: mdl-38711200

Modelling atopic dermatitis (AD) in vitro is paramount to understand the disease pathophysiology and identify novel treatments. Previous studies have shown that the Th2 cytokines IL-4 and IL-13 induce AD-like features in keratinocytes in vitro. However, it has not been systematically researched whether the addition of Th2 cells, their supernatants or a 3D structure is superior to model AD compared to simple 2D cell culture with cytokines. For the first time, we investigated what in vitro option most closely resembles the disease in vivo based on single-cell RNA sequencing data (scRNA-seq) obtained from skin biopsies in a clinical study and published datasets of healthy and AD donors. In vitro models were generated with primary fibroblasts and keratinocytes, subjected to cytokine treatment or Th2 cell cocultures in 2D/3D. Gene expression changes were assessed using qPCR and Multiplex Immunoassays. Of all cytokines tested, incubation of keratinocytes and fibroblasts with IL-4 and IL-13 induced the closest in vivo-like AD phenotype which was observed in the scRNA-seq data. Addition of Th2 cells to fibroblasts failed to model AD due to the downregulation of ECM-associated genes such as POSTN. While keratinocytes cultured in 3D showed better stratification than in 2D, changes induced with AD triggers did not better resemble AD keratinocyte subtypes observed in vivo. Taken together, our comprehensive study shows that the simple model using IL-4 or IL-13 in 2D most accurately models AD in fibroblasts and keratinocytes in vitro, which may aid the discovery of novel treatment options.


Dermatitis, Atopic , Fibroblasts , Interleukin-13 , Interleukin-4 , Keratinocytes , Sequence Analysis, RNA , Single-Cell Analysis , Th2 Cells , Humans , Fibroblasts/metabolism , Interleukin-4/pharmacology , Interleukin-4/metabolism , Interleukin-13/metabolism , Interleukin-13/pharmacology , Cytokines/metabolism , Coculture Techniques , RNA-Seq , Cells, Cultured , Skin/pathology
2.
Front Immunol ; 15: 1356298, 2024.
Article En | MEDLINE | ID: mdl-38690264

Chronic rhinosinusitis with nasal polyps (CRSwNP) is predominantly a type 2 inflammatory disease associated with type 2 (T2) cell responses and epithelial barrier, mucociliary, and olfactory dysfunction. The inflammatory cytokines interleukin (IL)-4, IL-13, and IL-5 are key mediators driving and perpetuating type 2 inflammation. The inflammatory responses driven by these cytokines include the recruitment and activation of eosinophils, basophils, mast cells, goblet cells, M2 macrophages, and B cells. The activation of these immune cells results in a range of pathologic effects including immunoglobulin E production, an increase in the number of smooth muscle cells within the nasal mucosa and a reduction in their contractility, increased deposition of fibrinogen, mucus hyperproduction, and local edema. The cytokine-driven structural changes include nasal polyp formation and nasal epithelial tissue remodeling, which perpetuate barrier dysfunction. Type 2 inflammation may also alter the availability or function of olfactory sensory neurons contributing to loss of sense of smell. Targeting these key cytokine pathways has emerged as an effective approach for the treatment of type 2 inflammatory airway diseases, and a number of biologic agents are now available or in development for CRSwNP. In this review, we provide an overview of the inflammatory pathways involved in CRSwNP and describe how targeting key drivers of type 2 inflammation is an effective therapeutic option for patients.


Interleukin-13 , Interleukin-4 , Nasal Polyps , Rhinitis , Sinusitis , Humans , Sinusitis/immunology , Sinusitis/metabolism , Nasal Polyps/immunology , Nasal Polyps/metabolism , Rhinitis/immunology , Rhinitis/metabolism , Chronic Disease , Interleukin-13/metabolism , Interleukin-13/immunology , Interleukin-4/metabolism , Interleukin-4/immunology , Signal Transduction , Inflammation/immunology , Inflammation/metabolism , Animals , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Rhinosinusitis
3.
J Physiol Pharmacol ; 75(2): 195-203, 2024 Apr.
Article En | MEDLINE | ID: mdl-38736266

Asthma is a common airway disease associated with allergic inflammation. Environmental factors, such as pollens, pollution, insect-borne antigens, or commercial chemicals, cause this disease. The common symptoms of this airway allergic reaction are increasing mucus, narrowing of the airway wall, coughing, and chest tightness. Medications, such as steroids, alleviate the disease but with severe side effects. Several studies have reported the anti-inflammatory effects of tree-based essential oil components, particularly 3-carene. Therefore, this study used 3-carene to determine if it alleviates asthmatic symptoms in the murine model. First, BALB/c mice were sensitized to an ovalbumin and aluminium hydroxide mixture on day 7th and 14th. From days 21st to 23rd, the mice were challenged with 3-carene and budesonide. The lung trachea, plasma, and bronchiolar lavage fluid (BAL fluid) were collected on day 24. The 3-carene treatment suppressed the cytokine gene expression, such as interleukin-4 (IL-4), IL-5, and IL-13, reducing the lung epithelial cell thickness in the asthmatic model. These results suggest that essential oil 3-carene has an anti-asthmatic effect.


Asthma , Bicyclic Monoterpenes , Interleukin-13 , Interleukin-4 , Interleukin-5 , Animals , Female , Mice , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Asthma/drug therapy , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Interleukin-13/metabolism , Interleukin-4/metabolism , Interleukin-5/metabolism , Lung/drug effects , Lung/pathology , Mice, Inbred BALB C , Ovalbumin , Bicyclic Monoterpenes/pharmacology
4.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732251

Asthma is a chronic respiratory disease with one of the largest numbers of cases in the world; thus, constant investigation and technical development are needed to unravel the underlying biochemical mechanisms. In this study, we aimed to develop a nano-DESI MS method for the in vivo characterization of the cellular metabolome. Using air-liquid interface (ALI) cell layers, we studied the role of Interleukin-13 (IL-13) on differentiated lung epithelial cells acting as a lung tissue model. We demonstrate the feasibility of nano-DESI MS for the in vivo monitoring of basal-apical molecular transport, and the subsequent endogenous metabolic response, for the first time. Conserving the integrity of the ALI lung-cell layer enabled us to perform temporally resolved metabolomic characterization followed by "bottom-up" proteomics on the same population of cells. Metabolic remodeling was observed upon histamine and corticosteroid treatment of the IL-13-exposed lung cell monolayers, in correlation with alterations in the proteomic profile. This proof of principle study demonstrates the utility of in vivo nano-DESI MS for characterizing ALI tissue layers, and the new markers identified in our study provide a good starting point for future, larger-scale studies.


Interleukin-13 , Lung , Metabolome , Metabolomics , Proteome , Proteomics , Interleukin-13/metabolism , Lung/metabolism , Proteomics/methods , Metabolomics/methods , Humans , Metabolome/drug effects , Proteome/metabolism , Mass Spectrometry/methods , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Asthma/metabolism , Asthma/drug therapy
5.
Nat Commun ; 15(1): 3900, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724552

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Asthma , GPI-Linked Proteins , Interleukin-13 , Lectins , Mucin 5AC , Mucus , Child , Humans , Asthma/genetics , Asthma/metabolism , Cytokines , Epithelial Cells/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Interleukin-13/genetics , Interleukin-13/metabolism , Lectins/genetics , Lectins/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Nasal Mucosa/metabolism , Polymorphism, Genetic , Respiratory Mucosa/metabolism
6.
Front Immunol ; 15: 1232070, 2024.
Article En | MEDLINE | ID: mdl-38638443

Chronic liver diseases, such as non-alcoholic steatohepatitis (NASH)-induced cirrhosis, are characterized by an increasing accumulation of stressed, damaged, or dying hepatocytes. Hepatocyte damage triggers the activation of resident immune cells, such as Kupffer cells (KC), as well as the recruitment of immune cells from the circulation toward areas of inflammation. After infiltration, monocytes differentiate into monocyte-derived macrophages (MoMF) which are functionally distinct from resident KC. We herein aim to compare the in vitro signatures of polarized macrophages and activated hepatic stellate cells (HSC) with ex vivo-derived disease signatures from human NASH. Furthermore, to shed more light on HSC activation and liver fibrosis progression, we investigate the effects of the secretome from primary human monocytes, macrophages, and NK cells on HSC activation. Interleukin (IL)-4 and IL-13 treatment induced transforming growth factor beta 1 (TGF-ß1) secretion by macrophages. However, the supernatant transfer did not induce HSC activation. Interestingly, PMA-activated macrophages showed strong induction of the fibrosis response genes COL10A1 and CTGF, while the supernatant of IL-4/IL-13-treated monocytes induced the upregulation of COL3A1 in HSC. The supernatant of PMA-activated NK cells had the strongest effect on COL10A1 induction in HSC, while IL-15-stimulated NK cells reduced the expression of COL1A1 and CTGF. These data indicate that other factors, aside from the well-known cytokines and chemokines, might potentially be stronger contributors to the activation of HSCs and induction of a fibrotic response, indicating a more diverse and complex role of monocytes, macrophages, and NK cells in liver fibrosis progression.


Kupffer Cells , Non-alcoholic Fatty Liver Disease , Humans , Kupffer Cells/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Interleukin-13/metabolism , Secretome , Macrophages , Liver Cirrhosis , Killer Cells, Natural/metabolism
7.
J Pharmacol Sci ; 155(2): 21-28, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677782

Goblet cell hyperplasia and increased mucus production are features of airway diseases, including asthma, and excess airway mucus often worsens these conditions. Even steroids are not uniformly effective in mucus production in severe asthma, and new therapeutic options are needed. Seihaito is a Japanese traditional medicine that is used clinically as an antitussive and expectorant. In the present study, we examined the effect of Seihaito on goblet cell differentiation and mucus production. In in vitro studies, using air-liquid interface culture of guinea-pig tracheal epithelial cells, Seihaito inhibited IL-13-induced proliferation of goblet cells and MUC5AC, a major component of mucus production. Seihaito suppressed goblet cell-specific gene expression, without changing ciliary cell-specific genes, suggesting that it inhibits goblet cell differentiation. In addition, Seihaito suppressed MUC5AC expression in cells transfected with SPDEF, a transcription factor activated by IL-13. Furthermore, Seihaito attenuated in vivo goblet cell proliferation and MUC5AC mRNA expression in IL-13-treated mouse lungs. Collectively, these findings demonstrated that Seihaito has an inhibitory effect on goblet cell differentiation and mucus production, which is at least partly due to the inhibition of SPDEF.


Cell Differentiation , Cell Proliferation , Goblet Cells , Interleukin-13 , Medicine, Kampo , Metaplasia , Mucin 5AC , Mucus , Animals , Goblet Cells/drug effects , Goblet Cells/pathology , Goblet Cells/metabolism , Interleukin-13/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Cell Differentiation/drug effects , Guinea Pigs , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Cells, Cultured , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Male , Gene Expression/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Mice , Trachea/cytology , Trachea/drug effects , Trachea/pathology , Trachea/metabolism
8.
PLoS One ; 19(4): e0302851, 2024.
Article En | MEDLINE | ID: mdl-38687777

Allergic inflammation, which is the pathogenesis of allergic rhinitis and asthma, is associated with disruption of the airway epithelial barrier due to the effects of type 2 inflammatory cytokines, i.e. interleukin-4 and interleukin-13 (IL-4/13). The anti-allergic inflammatory effect of ß-eudesmol (BE) on the tight junction (TJ) of the airway epithelium has not previously been reported. Herein, the barrier protective effect of BE was determined by measurement of transepithelial electrical resistance and by paracellular permeability assay in an IL-4/13-treated 16HBE14o- monolayer. Pre-treatment of BE concentration- and time- dependently inhibited IL-4/13-induced TJ barrier disruption, with the most significant effect observed at 20 µM. Cytotoxicity analyses showed that BE, either alone or in combination with IL-4/13, had no effect on cell viability. Western blot and immunofluorescence analyses showed that BE inhibited IL-4/13-induced mislocalization of TJ components, including occludin and zonula occludens-1 (ZO-1), without affecting the expression of these two proteins. In addition, the mechanism of the TJ-protective effect of BE was mediated by inhibition of IL-4/13-induced STAT6 phosphorylation, in which BE might serve as an antagonist of cytokine receptors. In silico molecular docking analysis demonstrated that BE potentially interacted with the site I pocket of the type 2 IL-4 receptor, likely at Asn-126 and Tyr-127 amino acid residues. It can therefore be concluded that BE is able to prevent IL-4/13-induced TJ disassembly by interfering with cytokine-receptor interaction, leading to suppression of STAT6-induced mislocalization of occludin and ZO-1. BE is a promising candidate for a therapeutic intervention for inflammatory airway epithelial disorders driven by IL-4/13.


Epithelial Cells , Interleukin-13 , Interleukin-4 , STAT6 Transcription Factor , Tight Junctions , Zonula Occludens-1 Protein , Tight Junctions/metabolism , Tight Junctions/drug effects , Humans , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Interleukin-4/metabolism , Interleukin-4/pharmacology , Interleukin-13/metabolism , STAT6 Transcription Factor/metabolism , Zonula Occludens-1 Protein/metabolism , Occludin/metabolism , Cell Line , Molecular Docking Simulation , Cytokines/metabolism , Cell Survival/drug effects
9.
J Immunol ; 212(9): 1407-1419, 2024 May 01.
Article En | MEDLINE | ID: mdl-38497670

Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.


Food Hypersensitivity , Mast Cells , Humans , Mast Cells/metabolism , Interleukin-10/metabolism , Tumor Necrosis Factor-alpha/metabolism , Immunoglobulin E/metabolism , Interleukin-33/metabolism , Interleukin-13/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Inflammation/metabolism , Cell Degranulation
10.
J Biol Chem ; 300(4): 107199, 2024 Apr.
Article En | MEDLINE | ID: mdl-38508309

Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.


Interleukin-13 , Macrophages, Alveolar , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Swine , Interleukin-13/metabolism , Interleukin-13/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Up-Regulation
11.
Front Immunol ; 15: 1361139, 2024.
Article En | MEDLINE | ID: mdl-38482017

Resident epidermal T cells of murine skin, called dendritic epidermal T cells (DETCs), express an invariant γδ TCR that recognizes an unidentified self-ligand expressed on epidermal keratinocytes. Although their fetal thymic precursors are preprogrammed to produce IFN-γ, DETCs in the adult epidermis rapidly produce IL-13 but not IFN-γ early after activation. Here, we show that preprogrammed IFN-γ-producing DETC precursors differentiate into rapid IL-13 producers in the perinatal epidermis. The addition of various inhibitors of signaling pathways downstream of TCR to the in vitro differentiation model of neonatal DETCs revealed that TCR signaling through the p38 MAPK pathway is essential for the functional differentiation of neonatal DETCs. Constitutive TCR signaling at steady state was also shown to be needed for the maintenance of the rapid IL-13-producing capacity of adult DETCs because in vivo treatment with the p38 MAPK inhibitor decreased adult DETCs with the rapid IL-13-producing capacity. Adult DETCs under steady-state conditions had lower glycolytic capacity than proliferating neonatal DETCs. TCR stimulation of adult DETCs induced high glycolytic capacity and IFN-γ production during the late phase of activation. Inhibition of glycolysis decreased IFN-γ but not IL-13 production by adult DETCs during the late phase of activation. These results demonstrate that TCR signaling promotes the differentiation of IL-13-producing DETCs in the perinatal epidermis and is needed for maintaining the rapid IL-13-producing capacity of adult DETCs. The low glycolytic capacity of adult DETCs at steady state also regulates the rapid IL-13 response and delayed IFN-γ production after activation.


Epidermis , T-Lymphocytes , Animals , Mice , T-Lymphocytes/metabolism , Epidermis/metabolism , Interleukin-13/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Genes Cells ; 29(5): 397-416, 2024 May.
Article En | MEDLINE | ID: mdl-38454012

Staphylococcus aureus is a noteworthy pathogen in allergic diseases, as four staphylococcal exotoxins activate mast cells, a significant contributor to inflammation, in an IgE-independent manner. Although the adhesion of mast cells is an essential process for their immune responses, only a small number of exotoxins have been reported to affect the process. Here, we demonstrated that staphylococcal superantigen-like (SSL) 3, previously identified as a toll-like receptor 2 agonist, induced the adhesion of murine bone marrow-derived mast cells to culture substratum. SSL3-induced adhesion was mediated by fibronectin in an Arg-Gly-Asp (RGD) sequence-dependent manner, suggesting the integrins were involved in the process. Additionally, SSL3 was found to bind to an anti-adhesive surface protein CD43. SSL3 induced the adhesion of HEK293 cells expressing exogenous CD43, suggesting that CD43 is the target molecule for adhesion induced by SSL3. Evaluation of SSL3-derived mutants showed that the C-terminal region (253-326), specifically T285 and H307, are necessary to induce adhesion. SSL3 augmented the IL-13 production of mast cells in response to immunocomplex and SSL12. These findings reveal a novel function of SSL3, triggering cell adhesion and enhancing mast cell activation. This study would clarify the correlation between S. aureus and allergic diseases such as atopic dermatitis.


Cell Adhesion , Leukosialin , Mast Cells , Staphylococcus aureus , Superantigens , Animals , Mast Cells/metabolism , Mast Cells/immunology , Mice , Humans , Superantigens/metabolism , Staphylococcus aureus/metabolism , Staphylococcus aureus/immunology , HEK293 Cells , Leukosialin/metabolism , Bacterial Proteins/metabolism , Interleukin-13/metabolism , Mice, Inbred C57BL
13.
Int Immunopharmacol ; 130: 111712, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38377858

Cutaneous drug reactions (CDRs) are common drug-induced allergic reactions that cause severe consequences in HIV/AIDS patients. The CCL17/CCR4 axis is involved in the immune mechanism of allergic diseases, but its role in the CDRs has not been determined. Here, we aimed to determine the role of the CCL17/CCR4 axis and the underlying mechanism involved in CDRs. In this study, the serum cytokine levels in patients with CDR and healthy controls were measured. The CCL17-triggered allergic profile was screened via a PCR array. Apoptosis of keratinocytes cocultured with CCL17-stimulated Th2 cells was analyzed by flow cytometry. An NVP-induced rat CDR model was established, and dynamic inflammatory factor levels and Th2 cells in the peripheral blood of the rats were measured. Rat skin lesions and signaling pathways in Th2 cells were also analyzed. We showed that the serum CCL17 level was significantly upregulated in CDR patients (P = 0.0077), and the Th2 cell subgroup was also significantly elevated in the CDR rats. The CCL17/CCR4 axis induces Th2 cells to release IL-4 and IL-13 via the ERK/STAT3 pathway. The CCR4 antagonist compound 47 can alleviate rash symptoms resulting from NVP-induced drug eruption, Th2 cell subgroup, IL-4, and IL-13 and inhibit keratinocyte apoptosis. Taken together, these findings indicate that the CCL17/CCR4 axis mediates CDR via the ERK/STAT3 pathway in Th2 cells and type 2 cytokine-induced keratinocyte apoptosis.


Interleukin-13 , Th2 Cells , Humans , Rats , Animals , Interleukin-13/metabolism , Interleukin-4/metabolism , Cytokines/metabolism , Signal Transduction , Receptors, CCR4/metabolism , Chemokine CCL17/metabolism , STAT3 Transcription Factor/metabolism
14.
Int Immunopharmacol ; 130: 111713, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38387192

Asthma, a disease intricately linked to immune inflammation, is significantly influenced by the immune regulatory effect of bone mesenchymal stem cells (BMSCs). This study aims to investigate changes in the homing of BMSCs in bronchial asthma, focusing on the Notch homolog (Notch)1/Jagged1 signaling pathway's role in regulating T helper 1(Th1)/T helper 2(Th2) drift. Additionally, we further explore the effects and mechanisms of homologous BMSCs implantation in asthma-related immune inflammation. Following intervention with BMSCs, a significant improvement in the pathology of rats with asthma was observed. Simultaneously, a reduction in the expression of inflammatory cells and inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin(IL)-4, and IL-13 was observed in bronchoalveolar lavage fluid (BALF). Furthermore, there was an increase in the expression of Th1 cytokine Interferon-γ(IFN-γ)and the transcription factor T-box expressed in T cell (T-bet), while the expression of Th2 cytokine IL-13 and transcription factor GATA binding protein (GATA)-3 decreased in lung tissue. This indicates that the Th1/Th2 drift leans towards Th1, which a crucial in ameliorating asthma inflammation. Importantly, inhibition of the Notch1 signaling pathway led to an increased expression of the Stromal cell-derived factor-1(SDF-1)/C-X-C motif chemokine receptor (CXCR)4 chemokine axis. Consequently, the homing ability of bone marrow mesenchymal stem cells to asthma-affected lung tissue was significantly enhanced. BMSCs demonstrated heightened efficacy in regulating the cytokine/chemokine network and Th1/Th2 balance, thereby restoring a stable state during the immune response process in asthma. In conclusion, inhibiting the Notch signaling pathway enhances the expression of the SDF-1 and CXCR4 chemokine axis, facilitating the migration of allogeneic BMSCs to injured lung tissues. This, in turn, promotes immune regulation and improves the Th1/Th2 imbalance, thereby enhancing the therapeutic effect on asthmatic airway inflammation.


Asthma , Mesenchymal Stem Cells , Rats , Animals , Mice , Interleukin-13/metabolism , Asthma/drug therapy , Lung/pathology , Cytokines/metabolism , Signal Transduction , Transcription Factors/metabolism , Inflammation/metabolism , Chemokines/metabolism , Mesenchymal Stem Cells/metabolism , Th2 Cells , Disease Models, Animal , Mice, Inbred BALB C , Receptor, Notch1/metabolism
15.
Biomed Pharmacother ; 173: 116319, 2024 Apr.
Article En | MEDLINE | ID: mdl-38422654

BACKGROUND: Effects of Dictamnus dasycarpus Turcz. on allergic asthma and their underlying mechanisms remain unclarified. Thus, we investigated the effects of D. dasycarpus Turcz. water extract (DDW) on mucus hypersecretion in mice with ovalbumin (OVA)-induced asthma and human bronchial epithelial cells. METHODS: BALB/c mice were used to establish an OVA-induced allergic asthma model. Mice were grouped into the OVA sensitization/challenge, 100 and 300 mg/kg DDW treatment, and dexamethasone groups. In mice, cell counts in bronchoalveolar lavage fluid (BALF), serum and BALF analyses, and histopathological lung tissue analyses were performed. Furthermore, we confirmed the basic mechanism in interleukin (IL)-4/IL-13-treated human bronchial epithelial cells through western blotting. RESULTS: In OVA-induced asthma mice, DDW treatment reduced inflammatory cell number and airway hyperresponsiveness and ameliorated histological changes (immune cell infiltration, mucus secretion, and collagen deposition) in lung tissues and serum total immunoglobulin E levels. DDW treatment lowered BALF IL-4, IL-5, and IL-13 levels; reduced levels of inflammatory mediators, such as thymus- and activation-regulated chemokine, macrophage-derived chemokine, and interferon gamma-induced protein; decreased mucin 5AC (MUC5AC) production; decreased signal transducer and activator of transcription (STAT) 6 and STAT3 expression; and restored forkhead box protein A2 (FOXA2) expression. In IL-4/IL-13-treated human bronchial epithelial cells, DDW treatment inhibited MUC5AC production, suppressed STAT6 and STAT3 expression (related to mucus hypersecretion), and increased FOXA2 expression. CONCLUSIONS: DDW treatment modulates MUC5AC expression and mucus hypersecretion by downregulating STAT6 and STAT3 expression and upregulating FOXA2 expression. These findings provide a novel approach to manage mucus hypersecretion in asthma using DDW.


Asthma , Dictamnus , Hepatocyte Nuclear Factor 3-beta , STAT3 Transcription Factor , Mice , Humans , Animals , Interleukin-13/metabolism , Interleukin-4/metabolism , Ovalbumin , Disease Models, Animal , Asthma/chemically induced , Asthma/drug therapy , Lung , Inflammation/metabolism , Mucus/metabolism , Bronchoalveolar Lavage Fluid , Mice, Inbred BALB C , Cytokines/metabolism , STAT6 Transcription Factor/metabolism
16.
Mol Biol Rep ; 51(1): 319, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38388914

OBJECTIVE: The prevalence of allergic rhinitis is high, making it a relatively common chronic condition. Countless patients suffer from seasonal Allergic rhinitis (AR). The objective of this investigation is to examine the potential involvement of common pollen allergens in seasonal allergic rhinitis, and study the proposed mechanism of Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response gene 88 (MyD88) signaling pathway in the induction of AR. METHOD: A mouse AR model (sensitized group) was constructed with pollen extracts and ovalbumin (OVA) of Artemisia annua (An), Artemisia argyi (Ar) and Artemisia Sieversiana (Si), and thereafter, AR symptom score was performed. After successful modeling, mouse serum and nasal mucosa tissues were extracted for subsequent experiments. The expression levels of immunoglobulin E (IgE), Interleukin (IL)-4, IL-5, IL-13 and Tumor Necrosis Factor-α (TNF-α) in serum were detected using Enzyme-linked immunosorbent assay (ELISA); Hematoxylin-eosin (H&E) staining methods were used to observe the pathological changes of the nasal mucosal tissue; Utilizing immunohistochemistry (IHC) staining, the expression levels of TLR4, MyD88 and Nuclear factor kappa B (NF-κB) p65 in mouse nasal mucosa were quantified; The mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of sensitized mice were detected with Quantitative reverse transcription PCR (qRT-PCR) and Western Blot. Finally, the in vitro culture of Human nasal mucosal epithelial cells (HNEpC) cells was conducted, and cells were treated with 200 µg/ml Artemisia annua pollen extract and OVA for 24 h. Western Blot assay was used to detect the expression level of TLR4, MyD88 and NF-κB p65 proteins before and after HNEpC cells were treated with MyD88 inhibitor ST-2825. RESULT: On the second day after AR stimulation, the mice showed obvious AR symptoms. H&E results showed that compared to the control group, the nasal mucosal tissue in the sensitized group was significantly more inflamed. Furthermore, ELISA assay showed increased expression levels of IgE, IL-4, IL-5, IL-13 and TNF-α in serum of mice induced by OVA and Artemisia annua pollen, Artemisia argyi pollen and Artemisia Sieversiana pollen than those of the control group. However, the expression level of IL-2 was lower than that of the control group (P < 0.05). Using Immunohistochemistry staining visually observed the expression levels of TLR4, MyD88 and NF-κB p65 in mouse nasal mucosa tissues and quantitatively analyzed. The expression levels of TLR4, MyD88 and NF-κB p65 in the sensitized group were higher than those in the control group, and the differences were statistically significant (P < 0.05). The results from qRT-PCR and Western Blot showed that the mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of the sensitized group were significantly higher than those in the control group (P < 0.05). Finally, HNEpC cells were cultured in vitro and analyzed using Western Blot. The expression levels of TLR4, MyD88 and NF-κB p65 in OVA and An groups were significantly increased (P < 0.05). After ST-2825 treatment, TLR4 protein expression was significantly increased (P < 0.05) and MyD88 and NF-κB p65 protein expression were significantly decreased (P < 0.05). CONCLUSION: To sum up, the occurrence and development of AR induced by OVA and pollen of Artemisia annua, Artemisia argyi and Artemisia Sieversiana were related to TLR4/MyD88 signal pathway.


Artemisia , Rhinitis, Allergic, Seasonal , Rhinitis, Allergic , Humans , Mice , Animals , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Ovalbumin , Interleukin-13/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-5/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Signal Transduction , Pollen , Immunoglobulin E/metabolism , RNA, Messenger
17.
Mol Immunol ; 167: 16-24, 2024 Mar.
Article En | MEDLINE | ID: mdl-38310669

Asthma is a common chronic respiratory disease characterized by Th2-type inflammation in the airways. Leucine zip transcription factor-like 1 (LZTFL1) has been implicated in the regulation of Th2-related factors. The knockdown of LZTFL1 resulted in decreased levels of IL-4, IL-5, and IL-13. We hypothesize that LZTFL1 may have an effect on asthma. We established an acute asthmatic mouse model using the Ovalbumin (OVA) sensitization, and we found that LZTFL1 expression was upregulated in OVA-induced CD4 + T cells. Mice challenged with OVA were administered 5 × 107 TU of lentivirus via tail vein injection. LZTFL1 knockdown reversed the frequency of sneezing and nose rubbing in OVA mice. LZTFL1 knockdown reduced inflammatory cell infiltration, reduced goblet cell numbers, and mitigated collagen deposition in lung tissue. LZTFL1 knockdown decreased the levels of OVA-specific IgE, IL-4, IL-5, and IL-13 in alveolar lavage fluid of asthmatic mice. Furthermore, LZTFL1 knockdown inhibited the aberrant activation of MEK/ERK signaling pathway in asthmatic mice. GATA binding protein 3 (GATA3) is an essential transcription factor in Th2 differentiation. Flow cytometry results revealed that LZTFL1 knockdown reduced the number of GATA3 + CD4 + Th2 cells, while it did not affect the stability of GATA3 mRNA. This may be attributed to ERK signaling which stabilized GATA3 by preventing its ubiquitination and subsequent degradation. In conclusion, LZTFL1 knockdown attenuates inflammation and pathological changes in OVA-induced asthmatic mice through ERK/GATA3 signaling pathway.


Asthma , Interleukin-13 , Animals , Mice , Anti-Inflammatory Agents/metabolism , Asthma/chemically induced , Asthma/genetics , Asthma/drug therapy , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Disease Models, Animal , Inflammation/pathology , Interleukin-13/metabolism , Interleukin-4/metabolism , Interleukin-5 , Lung/metabolism , Mice, Inbred BALB C , Ovalbumin/metabolism , Signal Transduction , Th2 Cells , Transcription Factors/metabolism , MAP Kinase Signaling System
18.
Vet Res ; 55(1): 25, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38414039

Stem cell-derived organoid cultures have emerged as attractive experimental models for infection biology research regarding various types of gastro-intestinal pathogens and host species. However, the large size of infectious nematode larvae and the closed structure of 3-dimensional organoids often hinder studies of the natural route of infection. To enable easy administration to the apical surface of the epithelium, organoids from the equine small intestine, i.e. enteroids, were used in the present study to establish epithelial monolayer cultures. These monolayers were functionally tested by stimulation with IL-4 and IL-13, and/or exposure to infectious stage larvae of the equine nematodes Parascaris univalens, cyathostominae and/or Strongylus vulgaris. Effects were recorded using transcriptional analysis combined with histochemistry, immunofluorescence-, live-cell- and scanning electron microscopy. These analyses revealed heterogeneous monolayers containing both immature and differentiated cells including tuft cells and mucus-producing goblet cells. Stimulation with IL-4/IL-13 increased tuft- and goblet cell differentiation as demonstrated by the expression of DCLK1 and MUC2. In these cytokine-primed monolayers, the expression of MUC2 was further promoted by co-culture with P. univalens. Moreover, live-cell imaging revealed morphological alterations of the epithelial cells following exposure to larvae even in the absence of cytokine stimulation. Thus, the present work describes the design, characterization and usability of an experimental model representing the equine nematode-infected small intestinal epithelium. The presence of tuft cells and goblet cells whose mucus production is affected by Th2 cytokines and/or the presence of larvae opens up for mechanistic studies of the physical interactions between nematodes and the equine intestinal mucosa.


Interleukin-13 , Nematoda , Animals , Horses , Interleukin-13/metabolism , Interleukin-4 , Goblet Cells , Intestinal Mucosa
19.
Discov Med ; 36(181): 372-384, 2024 Feb.
Article En | MEDLINE | ID: mdl-38409842

BACKGROUND: Allergic asthma (AA) is a prevalent chronic airway inflammation disease. In this study, this study aims to investigate the biological functions and potential regulatory mechanisms of the insulin receptor (INSR) in the progression of AA. METHODS: BALB/c mice (n = 48) were randomly divided into the following groups: control group, AA group, AA+Lentivirus (Lv)-vector short hairpin RNA (shRNA) group, AA+Lv-vector group, AA+Lv-INSR shRNA group, and AA+Lv-INSR group. The pulmonary index was calculated. mRNA and protein expression levels of INSR, signal transducer and activator of transcription 3 (STAT3), Janus kinase 2 (JAK2), phosphorylated-STAT3 (p-STAT3), phosphorylated-JAK2 (p-JAK2), alpha-smooth muscle actin (α-SMA), febrile neutropenia (FN), mucin 5AC (MUC5AC), and mucin 5B (MUC5B) were examined using reverse-transcription quantitative PCR (RT-qPCR) and western blot assays. Positive expressions of INSR, retinoic acid-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) were quantified by immunohistochemistry. Fluorescence intensities of α-SMA and FN were detected by immunofluorescence. Pathological morphology was observed through hematoxylin-eosin (H&E) staining, Masson staining, and Periodic Acid-Schiff (PAS) staining. Contents of immunoglobulin E (IgE), interleukin-6 (IL-6), eotaxin, interleukin-4 (IL-4), interleukin-13 (IL-13), interferon-γ (IFN-γ), interleukin-17 (IL-17), and interleukin-10 (IL-10) were quantified using enzyme-linked immunosorbent assay (ELISA). The percentage of T helper 17 (Th17) and regulatory T (Treg) cells was determined through flow cytometry. RESULTS: Compared to the control group, expression levels of INSR, p-STAT3, p-JAK2, α-SMA, FN, MUC5AC, MUC5B, RORγt, and Foxp3, as well as IgE, IL-6, eotaxin, IL-4, IL-13, and IL-17 contents, pulmonary index, glycogen-positive area (%), and Th17 cell percentage significantly increased (p < 0.05). Additionally, pulmonary histopathological deterioration and collagen deposition were aggravated, while Treg cell percentage and IFN-γ and IL-10 contents remarkably decreased (p < 0.05). The overexpression of INSR further exacerbated the progression of allergic asthma, but the down-regulation of INSR reversed the trends of the above indicators. CONCLUSIONS: The down-regulation of INSR alleviates airway hyperviscosity, inflammatory infiltration, and airway remodeling, restoring Th17/Treg immune balance in AA mice by inactivating the STAT3 pathway.


Asthma , Interleukin-10 , Pulmonary Disease, Chronic Obstructive , Mice , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-6/metabolism , Down-Regulation , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Asthma/metabolism , Asthma/pathology , Immunoglobulin E/genetics , Immunoglobulin E/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , RNA, Small Interfering
20.
Mol Immunol ; 168: 51-63, 2024 Apr.
Article En | MEDLINE | ID: mdl-38422887

Allergic rhinitis (AR) is caused by immunoglobulin E (IgE)-mediated reactions to inhaled allergens, which leads to mucosal inflammation and barrier dysfunction. The transcription factor forkhead box C1 (FOXC1) has been identified to be associated with allergic inflammation. This study sought to uncover the role of FOXC1 in AR. A murine model of AR was induced by repeated intranasal ovalbumin (OVA) challenges. Results revealed that high FOXC1 expression was found in the nasal mucosal epithelium of AR mice. Nasal allergy symptoms, mucosal epithelial swelling, goblet cell hyperplasia and eosinophil infiltration in AR mice were attenuated after silencing of FOXC1. Knockdown of FOXC1 decreased the levels of T-helper 2 cytokines interleukin(IL)-4 and IL-13 in nasal lavage fluid, and serum OVA-specific IgE and histamine. Silencing of FOXC1 restored nasal epithelial integrity in AR mice by enhancing the expression of tight junctions (TJs) and adherence junction. Furthermore, knocking down FOXC1 increased tight junction expression and transepithelial electrical resistance (TEER) in IL-13-treated air-liquid interface (ALI) cultures of human nasal epithelial cells (HNEpCs). Mechanistically, silencing of FOXC1 induced DNA methylation of secreted frizzled-related protein 5 (SFRP5) promoter and increased its expression in the nasal mucosa of AR mice and IL-13-treated ALI cultures. FOXC1 overexpression transcriptionally activated DNA methyltransferase 3B (DNMT3B) in IL-13-treated ALI cultures. Knockdown of SFRP5 reversed the protection of FOXC1 silencing on epithelial barrier damage induced by IL-13. Collectively, silencing of FOXC1 reduced allergic inflammation and nasal epithelial barrier damage in AR mice via upregulating SFRP5, which may be attribute to DNMT3B-driven DNA methylation. Our study indicated that FOXC1 may represent a potential therapeutic target for AR.


Rhinitis, Allergic , Secreted Frizzled-Related Proteins , Animals , Humans , Mice , Cytokines/metabolism , Disease Models, Animal , Immunoglobulin E/metabolism , Inflammation/metabolism , Interleukin-13/metabolism , Mice, Inbred BALB C , Nasal Mucosa/metabolism , Ovalbumin/metabolism , Rhinitis, Allergic/genetics , Rhinitis, Allergic/drug therapy
...